quickconverts.org

Variance Formula

Image related to variance-formula

Understanding the Variance Formula: A Simple Guide



Understanding data is crucial in many fields, from finance and science to marketing and social sciences. One of the most important measures of data dispersion, or spread, is variance. It tells us how far individual data points are spread out from the mean (average). A high variance indicates data points are widely scattered, while a low variance means they are clustered closely around the mean. This article will demystify the variance formula, making it accessible to everyone.

1. What is Variance?



Variance measures the average squared deviation from the mean. Why squared deviation? Simply summing the deviations from the mean will always result in zero, as positive and negative deviations cancel each other out. Squaring the deviations ensures all values are positive, providing a meaningful measure of dispersion. The result is then averaged to provide a single, representative value of spread. Larger variance indicates greater variability in the data set.

2. The Population Variance Formula



When you have data for the entire population (e.g., the height of every student in a specific school), you use the population variance formula:

σ² = Σ(xi - μ)² / N

Where:

σ² (sigma squared) represents the population variance.
Σ (sigma) denotes summation (adding up all values).
xi represents each individual data point.
μ (mu) represents the population mean (average).
N represents the total number of data points in the population.

Let's break it down:

1. (xi - μ): This calculates the deviation of each data point (xi) from the population mean (μ).
2. (xi - μ)²: This squares each deviation, ensuring positive values.
3. Σ(xi - μ)²: This sums all the squared deviations.
4. Σ(xi - μ)² / N: This divides the sum of squared deviations by the total number of data points (N), providing the average squared deviation – the variance.

Example: Imagine the heights (in cm) of all five students in a class are: 160, 165, 170, 175, 180. The mean (μ) is 170 cm. Calculating the variance:

1. Deviations: (-10, -5, 0, 5, 10)
2. Squared Deviations: (100, 25, 0, 25, 100)
3. Sum of Squared Deviations: 250
4. Variance (σ²): 250 / 5 = 50 cm²

3. The Sample Variance Formula



More often, we work with a sample of data (e.g., the height of a randomly selected group of students from a large school) to estimate the population variance. In this case, we use the sample variance formula:

s² = Σ(xi - x̄)² / (n - 1)

Where:

s² represents the sample variance.
x̄ (x-bar) represents the sample mean.
n represents the total number of data points in the sample.

Notice the denominator is (n - 1) instead of n. This is called Bessel's correction. It provides an unbiased estimator of the population variance. Using 'n' would underestimate the population variance, especially with small samples.

Example: Let's say we have a sample of three heights: 160, 165, 170. The sample mean (x̄) is 165 cm.

1. Deviations: (-5, 0, 5)
2. Squared Deviations: (25, 0, 25)
3. Sum of Squared Deviations: 50
4. Variance (s²): 50 / (3 - 1) = 25 cm²

4. Standard Deviation: The Square Root of Variance



While variance is a useful measure, its units are squared (cm² in our examples). To get a measure of dispersion in the original units, we calculate the standard deviation. The standard deviation is simply the square root of the variance:

Population Standard Deviation (σ) = √σ²
Sample Standard Deviation (s) = √s²

5. Key Takeaways



Variance measures the average squared deviation from the mean, indicating data spread.
The population variance formula uses 'N' while the sample variance formula uses '(n-1)' (Bessel's correction).
Standard deviation is the square root of the variance, providing a measure of spread in the original units.
High variance signifies greater variability, while low variance indicates data points cluster closely around the mean.

Frequently Asked Questions (FAQs)



1. Why do we square the deviations? Squaring ensures all values are positive, preventing positive and negative deviations from canceling each other out.

2. What is the difference between population and sample variance? Population variance uses data from the entire population, while sample variance uses data from a subset and includes Bessel's correction for unbiased estimation.

3. Why use (n-1) in the sample variance formula? This is Bessel's correction, which provides an unbiased estimate of the population variance, particularly crucial with smaller sample sizes.

4. What is the relationship between variance and standard deviation? Standard deviation is the square root of the variance, expressing the spread in the original units of measurement.

5. Can variance be negative? No, variance is always non-negative because it involves squaring the deviations. A variance of zero indicates all data points are identical.

Links:

Converter Tool

Conversion Result:

=

Note: Conversion is based on the latest values and formulas.

Formatted Text:

language infusion erfaringer
unprecedented synonym
rigid synonymer
difference between conventional and convection oven
transient guest meaning
that is the question shakespeare
present continuous
p2v2 azure
father grandfather backup
naclo ki
vosotros vs ustedes
upper jaw bigger than lower
rf value
ziegler nichols closed loop tuning
central park dimensions

Search Results:

为什么样本方差(sample variance)的分母是 n-1? - 知乎 知乎是一个发现问题背后世界的平台,让每一次点击都充满意义。

Excel函数公式大全(图文详解) - 知乎 6 days ago · 单条件求和. SUMIF函数是对选中范围内符合指定条件的值求和。 sumif函数语法是:=SUMIF(range,criteria,sum_range)

如何理解管理会计中的Flexible-Budget? - 知乎 知乎,中文互联网高质量的问答社区和创作者聚集的原创内容平台,于 2011 年 1 月正式上线,以「让人们更好的分享知识、经验和见解,找到自己的解答」为品牌使命。知乎凭借认真、专业、友善的社区氛围、独特的产品机制以及结构化和易获得的优质内容,聚集了中文互联网科技、商业、 …

Realized Volatility不同数据频率 差异巨大 如何解读这一现象? - 知乎 这有两个概念,第一,对于布朗运动的二次变差离散估计,也就是所谓的realized Vol formula,理论上分得越细腻越好,离散估计的步长误差会越来越小;第二,在现实生活里,market的move都是由microstructure level的order activities来决定的,而Exchange存在最小increment,因此price本质上是以小跳跃的形式出现 ...

深度学习的loss一般收敛到多少? - 知乎 图3. Model with both high variance and high bias. 我们姑且把上面这种图叫做loss-size图,这里解释一下上面的这种图的意思,纵轴是代表loss,而横轴指的是训练集的大小;要把这张图画出来,需要咱们把训练集划分成很多等分之后,不断扩充训练集的大小来训练模型直到模型收敛位置;比如咱们的训练集包含 ...

知乎 - 有问题,就会有答案 知乎,中文互联网高质量的问答社区和创作者聚集的原创内容平台,于 2011 年 1 月正式上线,以「让人们更好的分享知识、经验和见解,找到自己的解答」为品牌使命。知乎凭借认真、专业、友善的社区氛围、独特的产品机制以及结构化和易获得的优质内容,聚集了中文互联网科技、商业、 …

(Variance Swap)方差互换是什么?如何理解? - 知乎 实际上,通常variance strike的定价是会比risk neutral realized variance的期望值要高一些,Peter Carr在. 这篇文章. 中已经谈到,原因是因为作为对手方和client做这笔交易的时候自己承担了variance上涨的风险,需要收取一定的premium来作为承担风险的报酬.

知乎 - 有问题,就会有答案 知乎 - 有问题,就会有答案

请问金融系统中提到的KYC是做什么用的? - 知乎 kyc的中文含义是了解你的客户,包含内容:国外的《反洗钱法》大多要求包括会计师事务所在内的自然人、法人和其他组织,要对自己的客户作出全面的了解,也就是了解你的客户原则。

covariance(协变)和 correlation(相关性)如何理解他们的区 … Covariance 是绝对值,体现了两组合之间绝对相关性的大小; Correlation 是在两组数据基础上的相对值,消除了数据组本身大小对相关性的影响(eliminate the effects of size),着重描述其相对的相关性,从而使不同规模的数据组之间具有可比性和对照性。