quickconverts.org

Variance Formula

Image related to variance-formula

Understanding the Variance Formula: A Simple Guide



Understanding data is crucial in many fields, from finance and science to marketing and social sciences. One of the most important measures of data dispersion, or spread, is variance. It tells us how far individual data points are spread out from the mean (average). A high variance indicates data points are widely scattered, while a low variance means they are clustered closely around the mean. This article will demystify the variance formula, making it accessible to everyone.

1. What is Variance?



Variance measures the average squared deviation from the mean. Why squared deviation? Simply summing the deviations from the mean will always result in zero, as positive and negative deviations cancel each other out. Squaring the deviations ensures all values are positive, providing a meaningful measure of dispersion. The result is then averaged to provide a single, representative value of spread. Larger variance indicates greater variability in the data set.

2. The Population Variance Formula



When you have data for the entire population (e.g., the height of every student in a specific school), you use the population variance formula:

σ² = Σ(xi - μ)² / N

Where:

σ² (sigma squared) represents the population variance.
Σ (sigma) denotes summation (adding up all values).
xi represents each individual data point.
μ (mu) represents the population mean (average).
N represents the total number of data points in the population.

Let's break it down:

1. (xi - μ): This calculates the deviation of each data point (xi) from the population mean (μ).
2. (xi - μ)²: This squares each deviation, ensuring positive values.
3. Σ(xi - μ)²: This sums all the squared deviations.
4. Σ(xi - μ)² / N: This divides the sum of squared deviations by the total number of data points (N), providing the average squared deviation – the variance.

Example: Imagine the heights (in cm) of all five students in a class are: 160, 165, 170, 175, 180. The mean (μ) is 170 cm. Calculating the variance:

1. Deviations: (-10, -5, 0, 5, 10)
2. Squared Deviations: (100, 25, 0, 25, 100)
3. Sum of Squared Deviations: 250
4. Variance (σ²): 250 / 5 = 50 cm²

3. The Sample Variance Formula



More often, we work with a sample of data (e.g., the height of a randomly selected group of students from a large school) to estimate the population variance. In this case, we use the sample variance formula:

s² = Σ(xi - x̄)² / (n - 1)

Where:

s² represents the sample variance.
x̄ (x-bar) represents the sample mean.
n represents the total number of data points in the sample.

Notice the denominator is (n - 1) instead of n. This is called Bessel's correction. It provides an unbiased estimator of the population variance. Using 'n' would underestimate the population variance, especially with small samples.

Example: Let's say we have a sample of three heights: 160, 165, 170. The sample mean (x̄) is 165 cm.

1. Deviations: (-5, 0, 5)
2. Squared Deviations: (25, 0, 25)
3. Sum of Squared Deviations: 50
4. Variance (s²): 50 / (3 - 1) = 25 cm²

4. Standard Deviation: The Square Root of Variance



While variance is a useful measure, its units are squared (cm² in our examples). To get a measure of dispersion in the original units, we calculate the standard deviation. The standard deviation is simply the square root of the variance:

Population Standard Deviation (σ) = √σ²
Sample Standard Deviation (s) = √s²

5. Key Takeaways



Variance measures the average squared deviation from the mean, indicating data spread.
The population variance formula uses 'N' while the sample variance formula uses '(n-1)' (Bessel's correction).
Standard deviation is the square root of the variance, providing a measure of spread in the original units.
High variance signifies greater variability, while low variance indicates data points cluster closely around the mean.

Frequently Asked Questions (FAQs)



1. Why do we square the deviations? Squaring ensures all values are positive, preventing positive and negative deviations from canceling each other out.

2. What is the difference between population and sample variance? Population variance uses data from the entire population, while sample variance uses data from a subset and includes Bessel's correction for unbiased estimation.

3. Why use (n-1) in the sample variance formula? This is Bessel's correction, which provides an unbiased estimate of the population variance, particularly crucial with smaller sample sizes.

4. What is the relationship between variance and standard deviation? Standard deviation is the square root of the variance, expressing the spread in the original units of measurement.

5. Can variance be negative? No, variance is always non-negative because it involves squaring the deviations. A variance of zero indicates all data points are identical.

Links:

Converter Tool

Conversion Result:

=

Note: Conversion is based on the latest values and formulas.

Formatted Text:

178cm in ft convert
168 cm to inches to feet convert
55 cm equals how many inches convert
40cm in inch convert
1829 cm in inches convert
convert 31 cm to inches convert
cm in inch convert
18 5 inches in cm convert
236 to cm convert
84 cm in mm convert
87 cm is how many inches convert
how tall is 54 cm convert
size converter cm to inches convert
21 x 297 cm in inches convert
how tall is 187 cm convert

Search Results:

如何理解管理会计中的Flexible-Budget? - 知乎 Flexible—Budget, 翻译成中文就是弹性预算。 首先第一个问题,什么是弹性预算? 企业预算体系中各种固定预算的编制是以一定的产销量为基础的。但企业内外部条件的变化往往使实际产销 …

Excel函数公式大全 (图文详解) 19 Feb 2025 · number1 (必需参数)要相加的第一个数字。 可以是具体数字,也可以是单元格引用或者单元格区域。

机器学习中的 Bias(偏差)、Error(误差)、Variance(方差) … 首先看Variance的变化,还是举打靶的例子。 假设我把抢瞄准在10环,虽然每一次射击都有偏差,但是这个偏差的方向是随机的,也就是有可能向上,也有可能向下。

深度学习的loss一般收敛到多少? - 知乎 2.1 High Variance 如果我们做出来的图如上面的图1所示,则说明我们的误差主要来源于Variance误差,所谓的Variance误差指的是模型在验证集上的误差与在训练集上的误差之间的 …

为什么样本方差(sample variance)的分母是 n-1? - 知乎 先把问题完整地描述下。 如果已知随机变量 的期望为 ,那么可以如下计算方差 : 上面的式子需要知道 的具体分布是什么(在现实应用中往往不知道准确分布),计算起来也比较复杂。 所以 …

为什么样本方差(sample variance)的分母是 n-1? - 知乎 让我们再回到样本方差(Sample Variance)的分母(n-1)上来。 你既然在看这个问题,那就已经知道了方差 \sigma^ {2} 的计算公式

covariance(协变)和 correlation(相关性)如何理解他们的区 … Covariance 是绝对值,体现了两组合之间绝对相关性的大小; Correlation 是在两组数据基础上的相对值,消除了数据组本身大小对相关性的影响(eliminate the effects of size),着重描述其 …

如何理解方差膨胀因子(Variance Inflation Factor,VIF)? 那么我们要怎么找到特征之间的多重共线性呢,其中的一个方法,就是使用方差膨胀因子(Variance Inflation Factor,VIF),在了解 VIF 如何进行计算之前,需要先知道拟合优度的计 …

知乎 - 有问题,就会有答案 MVHR(最小方差套期保值比率)について、その具体的な意味や使用方法を解説しています。

Realized Volatility不同数据频率 差异巨大 如何解读这一现象? - 知乎 第四,不知道你用什么formula计算的realized volatility,你的2 day change是怎么定义的。 正确做法是,把两天的log price process每5min分一个点,然后相差再平方求和,这个是这两天 …