quickconverts.org

Variance Formula

Image related to variance-formula

Understanding the Variance Formula: A Simple Guide



Understanding data is crucial in many fields, from finance and science to marketing and social sciences. One of the most important measures of data dispersion, or spread, is variance. It tells us how far individual data points are spread out from the mean (average). A high variance indicates data points are widely scattered, while a low variance means they are clustered closely around the mean. This article will demystify the variance formula, making it accessible to everyone.

1. What is Variance?



Variance measures the average squared deviation from the mean. Why squared deviation? Simply summing the deviations from the mean will always result in zero, as positive and negative deviations cancel each other out. Squaring the deviations ensures all values are positive, providing a meaningful measure of dispersion. The result is then averaged to provide a single, representative value of spread. Larger variance indicates greater variability in the data set.

2. The Population Variance Formula



When you have data for the entire population (e.g., the height of every student in a specific school), you use the population variance formula:

σ² = Σ(xi - μ)² / N

Where:

σ² (sigma squared) represents the population variance.
Σ (sigma) denotes summation (adding up all values).
xi represents each individual data point.
μ (mu) represents the population mean (average).
N represents the total number of data points in the population.

Let's break it down:

1. (xi - μ): This calculates the deviation of each data point (xi) from the population mean (μ).
2. (xi - μ)²: This squares each deviation, ensuring positive values.
3. Σ(xi - μ)²: This sums all the squared deviations.
4. Σ(xi - μ)² / N: This divides the sum of squared deviations by the total number of data points (N), providing the average squared deviation – the variance.

Example: Imagine the heights (in cm) of all five students in a class are: 160, 165, 170, 175, 180. The mean (μ) is 170 cm. Calculating the variance:

1. Deviations: (-10, -5, 0, 5, 10)
2. Squared Deviations: (100, 25, 0, 25, 100)
3. Sum of Squared Deviations: 250
4. Variance (σ²): 250 / 5 = 50 cm²

3. The Sample Variance Formula



More often, we work with a sample of data (e.g., the height of a randomly selected group of students from a large school) to estimate the population variance. In this case, we use the sample variance formula:

s² = Σ(xi - x̄)² / (n - 1)

Where:

s² represents the sample variance.
x̄ (x-bar) represents the sample mean.
n represents the total number of data points in the sample.

Notice the denominator is (n - 1) instead of n. This is called Bessel's correction. It provides an unbiased estimator of the population variance. Using 'n' would underestimate the population variance, especially with small samples.

Example: Let's say we have a sample of three heights: 160, 165, 170. The sample mean (x̄) is 165 cm.

1. Deviations: (-5, 0, 5)
2. Squared Deviations: (25, 0, 25)
3. Sum of Squared Deviations: 50
4. Variance (s²): 50 / (3 - 1) = 25 cm²

4. Standard Deviation: The Square Root of Variance



While variance is a useful measure, its units are squared (cm² in our examples). To get a measure of dispersion in the original units, we calculate the standard deviation. The standard deviation is simply the square root of the variance:

Population Standard Deviation (σ) = √σ²
Sample Standard Deviation (s) = √s²

5. Key Takeaways



Variance measures the average squared deviation from the mean, indicating data spread.
The population variance formula uses 'N' while the sample variance formula uses '(n-1)' (Bessel's correction).
Standard deviation is the square root of the variance, providing a measure of spread in the original units.
High variance signifies greater variability, while low variance indicates data points cluster closely around the mean.

Frequently Asked Questions (FAQs)



1. Why do we square the deviations? Squaring ensures all values are positive, preventing positive and negative deviations from canceling each other out.

2. What is the difference between population and sample variance? Population variance uses data from the entire population, while sample variance uses data from a subset and includes Bessel's correction for unbiased estimation.

3. Why use (n-1) in the sample variance formula? This is Bessel's correction, which provides an unbiased estimate of the population variance, particularly crucial with smaller sample sizes.

4. What is the relationship between variance and standard deviation? Standard deviation is the square root of the variance, expressing the spread in the original units of measurement.

5. Can variance be negative? No, variance is always non-negative because it involves squaring the deviations. A variance of zero indicates all data points are identical.

Links:

Converter Tool

Conversion Result:

=

Note: Conversion is based on the latest values and formulas.

Formatted Text:

how many inches in 112 cm convert
how big is 58 cm convert
40 cm in inch convert
138cm to feet convert
120 cm convert
how many inches 34 cm convert
12 centimeters to inches convert
what is 17cm in inches convert
2 3cm in inches convert
what is 20cm convert
10 cm equals inches convert
in inches how much is 5 cm convert
23 cmtoinches convert
convert 75cm to inches convert
177 to inches convert

Search Results:

如何理解扩散模型中的SDE? - 知乎 如果初始分布具有单位方差,它的前向过程产生的新采样的分布方差会固定等于 1,所以 DDPM 对应的 SDE 是一个 Variance Preserving (VP) SDE——“方差保持 SDE”。 最后来看下,DDPM …

如何理解深度学习源码里经常出现的logits? - 知乎 tensorflow/tensorflowlogit原本是一个函数,它是sigmoid函数(也叫标准logistic函数) p (x) = 1 1 + e x 的反函数: l o g i t (p) = log (p 1 p) 。logit这个名字的来源即为 log istic un it。 但在深度学 …

为什么样本方差(sample variance)的分母是 n-1? - 知乎 先把问题完整地描述下。 如果已知随机变量 的期望为 ,那么可以如下计算方差 : 上面的式子需要知道 的具体分布是什么(在现实应用中往往不知道准确分布),计算起来也比较复杂。 所以 …

covariance(协变)和 correlation(相关性)如何理解他们的区 … Covariance 是绝对值,体现了两组合之间绝对相关性的大小; Correlation 是在两组数据基础上的相对值,消除了数据组本身大小对相关性的影响(eliminate the effects of size),着重描述其 …

如何理解variation of parameter, 中文又称常数变异法/参数变换 … 在数学中,参数变分法又称为常数变分法,是求解非齐次线性常微分方程的一种通用方法。

为什么样本方差(sample variance)的分母是 n-1? - 知乎 让我们再回到样本方差(Sample Variance)的分母(n-1)上来。 你既然在看这个问题,那就已经知道了方差 \sigma^ {2} 的计算公式

Realized Volatility不同数据频率 差异巨大 如何解读这一现象? - 知乎 第四,不知道你用什么formula计算的realized volatility,你的2 day change是怎么定义的。 正确做法是,把两天的log price process每5min分一个点,然后相差再平方求和,这个是这两天 …

MVHR (minimum variance hedge ratio)具体是什么意思 如何应用 … MVHR (minimum variance hedge ratio)具体是什么意思 如何应用呢? Rdc的波动性和Rfx跟Rfc的相关性有关,那我不是无论做什么都不能改变相关性,也就不能改变波动率。 如果要降低波 …

请问variance 和variation有什呢区别? - 知乎 variance和 variation 有时候都译作变异,但二者的范围很不一样。 variance的含义更窄,就是指 方差。 variation是指数据彼此之间的差异,衡量这种差异程度的指标有全距、 标准差 、方差 …

用excel怎样求variance-covariance matrix? - 知乎 用excel怎样求variance-covariance matrix? 作业里有给定均值、标准差请问用什么函数求variance-covariance matrix,求说的具体一点 [图片] 显示全部 关注者 7