quickconverts.org

Ratio Test Power Series

Image related to ratio-test-power-series

The Ratio Test for Power Series: Determining Convergence and Radius of Convergence



Power series, infinite sums of the form $\sum_{n=0}^{\infty} c_n(x-a)^n$, are fundamental objects in calculus and analysis. Understanding their convergence is crucial for many applications. While various tests exist, the ratio test provides a particularly elegant and powerful method for determining the interval of convergence of a power series, specifically its radius of convergence. This article will explore the ratio test's application to power series, explaining its mechanics and illustrating its use through examples.


Understanding the Ratio Test



The ratio test examines the limit of the ratio of consecutive terms in a series. For a general series $\sum_{n=0}^{\infty} a_n$, the ratio test states:

1. If $\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| = L < 1$, the series converges absolutely.
2. If $\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| = L > 1$ or $\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| = \infty$, the series diverges.
3. If $\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| = L = 1$, the test is inconclusive.


Applying the Ratio Test to Power Series



When applying the ratio test to a power series $\sum_{n=0}^{\infty} c_n(x-a)^n$, we treat the terms $a_n = c_n(x-a)^n$. The ratio becomes:

$\left|\frac{a_{n+1}}{a_n}\right| = \left|\frac{c_{n+1}(x-a)^{n+1}}{c_n(x-a)^n}\right| = |x-a| \left|\frac{c_{n+1}}{c_n}\right|$

The limit as $n \to \infty$ then depends on the behavior of $\left|\frac{c_{n+1}}{c_n}\right|$. Let's denote:

$R = \lim_{n\to\infty} \left|\frac{c_n}{c_{n+1}}\right|$ (Note: this is the reciprocal of the usual limit). This limit, R, represents the radius of convergence.


Determining the Radius and Interval of Convergence



Using the ratio test on the power series, we find that the series converges absolutely when:

$|x-a| \lim_{n\to\infty} \left|\frac{c_{n+1}}{c_n}\right| < 1$

This simplifies to:

$|x-a| < R$

This inequality defines an interval centered at a with a radius of R. The interval of convergence is then (a - R, a + R). We must also test the endpoints, x = a - R and x = a + R, separately using other convergence tests (e.g., the alternating series test, p-series test) since the ratio test is inconclusive at these points.


Example: Finding the Radius and Interval of Convergence



Let's consider the power series: $\sum_{n=1}^{\infty} \frac{x^n}{n^2}$

Here, $c_n = \frac{1}{n^2}$, $a = 0$. We compute:

$\lim_{n\to\infty} \left|\frac{c_n}{c_{n+1}}\right| = \lim_{n\to\infty} \left|\frac{\frac{1}{n^2}}{\frac{1}{(n+1)^2}}\right| = \lim_{n\to\infty} \left(\frac{n+1}{n}\right)^2 = 1$

Therefore, R = 1. The interval of convergence is (-1, 1). Now we test the endpoints:

x = -1: $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$ converges absolutely (by the alternating series test).
x = 1: $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges (p-series with p = 2 > 1).

Thus, the interval of convergence is [-1, 1].


Limitations of the Ratio Test



The ratio test is a powerful tool, but it has limitations. As mentioned earlier, if the limit of the ratio is 1, the test is inconclusive. In such cases, other convergence tests are needed. Furthermore, the ratio test can be computationally challenging for power series with complex coefficients or intricate patterns in their terms.


Summary



The ratio test provides an efficient method for determining the radius and interval of convergence of a power series. By examining the limit of the ratio of consecutive terms, we can identify the radius of convergence, R. The interval of convergence is then (a - R, a + R), with the endpoints needing separate analysis using other convergence tests. While powerful, the ratio test is not universally applicable, and its limitations must be considered.


FAQs



1. What if the limit of the ratio is 1? If the limit is 1, the ratio test is inconclusive. Other convergence tests, such as the root test, comparison test, or integral test, must be employed.

2. Can the radius of convergence be infinite? Yes, if the limit of the ratio is 0, the radius of convergence is infinite, meaning the power series converges for all real numbers.

3. What does the radius of convergence represent geometrically? The radius of convergence represents the radius of the largest open interval centered at 'a' for which the power series converges absolutely.

4. Why do we need to test the endpoints separately? The ratio test is inconclusive at the endpoints of the interval of convergence. The series might converge conditionally or diverge at these points. Other tests are necessary to determine the convergence at the endpoints.

5. What are some alternative tests for convergence besides the ratio test? The root test, comparison test, limit comparison test, integral test, and alternating series test are some alternatives useful for determining convergence. The choice of test depends on the specific series being examined.

Links:

Converter Tool

Conversion Result:

=

Note: Conversion is based on the latest values and formulas.

Formatted Text:

west gang sign
persian empire at its height
black and white o
1 modulo 5
anecdotal statistics
psychological phenomenon from a cultural perspective
write exponent in word
maria callas weight
sata revision 32
donald duck eats duck
palabras graves con tilde
voltage divider rule derivation
sin 2i
ag chemical symbol
v dr dt

Search Results:

市场渗透率和市场占有率的区别是什么? - 知乎 很简单,举个例子吧。 新能源汽车,2015年,中国卖了33万台,其中比亚迪卖了6万台,那么比亚迪在中国新能源汽车市场, 市场占有率 多少?大概20% 还是新能源汽车,2015年中国卖了33 …

Abaqus计算出现这种错误而中断是什么原因,该怎么办? - 知乎 The element contained in element set ErrElemExcessDistortion-step1 have distorted excessively.Ther…

市盈率高好还是低好?多少合理? - 知乎 2000年互联网泡沫之前,道琼斯工业指数市盈率也高达60倍,随后就是一路下探,重新回到30倍以内的合理区间。所以,也有人戏称60倍以上市盈率为 “市梦率”。 市盈率高好还是低好? 市盈 …

GO功能注释分析图?横纵坐标代表什么? 以及黑色圆圈,以及图 … 纵坐标是富集的GO词条,横坐标是Gene ratio,就是该词条的基因数占所有基因的比例 图其实是一个散点图: (1)点的大小就是这个词条下包含的基因数(count值),就是你说的黑色圆 …

如何通俗的理解sortino ratio(索提诺比率)? - 知乎 索提诺比率(Sortino Ratio)可比夏普比率(Sharpe Ratio)和卡玛比率(Calmar Ratio),都是风险调整后收益比率,因此分子都是收益指标,分母都是风险指标。 索提诺比率的核心是, …

拉曼光谱Id峰和Ig峰的峰强度表明什么啊? - 知乎 27 Mar 2024 · 拉曼光谱中的Id峰和Ig峰是碳材料(如石墨、石墨烯等)的特征峰,它们的峰强度可以提供关于样品结构和性质的信息。 1. Id峰:Id峰通常对应于碳材料中存在的缺陷或杂质,如 …

英特尔CPU 可以调整的ring ratio (ring 频率)是什么? - 知乎 9 Oct 2022 · Auto的意思基本是和CPU Ratio同步一起调节,也可以单独调节。 说它和CPU Cache相关, 是因为Ring Bus的倍频器和CPU LLC(L3,最后最大的缓存)公用。 所以Ring …

Rate、ratio、proportion,这三个表示比率的单词有什么区别? 所以从逻辑上来说 proportion 和 Rate 都是 ratio Rate则是一种特殊的Ratio, 一般多用于物理学。 其强调的是在某一个物理量和单位量的ratio. 相当于中文的“每X多少”,中文翻译成比率。 比如 …

nominal,ordinal,interval,ratio variable怎么区分?请用中文回答 最后Ratio,就是顾名思义,可以用来做比例的比较,几倍几倍这样,做定量的比较。 我个人感觉,它是Interval的升级版,就是当数字0具有意义的时候,就用它。 就像,收入为0(也就是穷 …

logistic回归中的OR值怎么解释? - 知乎 OR值 (odds ratio)又称比值比、优势比。 上图Logistic回归分析结果输出的 OR值,工作年限会对“是否违约”产生显著的负向影响关系, 优势比 (OR值)为0.771,意味着工作年限增加一个单位 …