quickconverts.org

Ratio Test Power Series

Image related to ratio-test-power-series

The Ratio Test for Power Series: Determining Convergence and Radius of Convergence



Power series, infinite sums of the form $\sum_{n=0}^{\infty} c_n(x-a)^n$, are fundamental objects in calculus and analysis. Understanding their convergence is crucial for many applications. While various tests exist, the ratio test provides a particularly elegant and powerful method for determining the interval of convergence of a power series, specifically its radius of convergence. This article will explore the ratio test's application to power series, explaining its mechanics and illustrating its use through examples.


Understanding the Ratio Test



The ratio test examines the limit of the ratio of consecutive terms in a series. For a general series $\sum_{n=0}^{\infty} a_n$, the ratio test states:

1. If $\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| = L < 1$, the series converges absolutely.
2. If $\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| = L > 1$ or $\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| = \infty$, the series diverges.
3. If $\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| = L = 1$, the test is inconclusive.


Applying the Ratio Test to Power Series



When applying the ratio test to a power series $\sum_{n=0}^{\infty} c_n(x-a)^n$, we treat the terms $a_n = c_n(x-a)^n$. The ratio becomes:

$\left|\frac{a_{n+1}}{a_n}\right| = \left|\frac{c_{n+1}(x-a)^{n+1}}{c_n(x-a)^n}\right| = |x-a| \left|\frac{c_{n+1}}{c_n}\right|$

The limit as $n \to \infty$ then depends on the behavior of $\left|\frac{c_{n+1}}{c_n}\right|$. Let's denote:

$R = \lim_{n\to\infty} \left|\frac{c_n}{c_{n+1}}\right|$ (Note: this is the reciprocal of the usual limit). This limit, R, represents the radius of convergence.


Determining the Radius and Interval of Convergence



Using the ratio test on the power series, we find that the series converges absolutely when:

$|x-a| \lim_{n\to\infty} \left|\frac{c_{n+1}}{c_n}\right| < 1$

This simplifies to:

$|x-a| < R$

This inequality defines an interval centered at a with a radius of R. The interval of convergence is then (a - R, a + R). We must also test the endpoints, x = a - R and x = a + R, separately using other convergence tests (e.g., the alternating series test, p-series test) since the ratio test is inconclusive at these points.


Example: Finding the Radius and Interval of Convergence



Let's consider the power series: $\sum_{n=1}^{\infty} \frac{x^n}{n^2}$

Here, $c_n = \frac{1}{n^2}$, $a = 0$. We compute:

$\lim_{n\to\infty} \left|\frac{c_n}{c_{n+1}}\right| = \lim_{n\to\infty} \left|\frac{\frac{1}{n^2}}{\frac{1}{(n+1)^2}}\right| = \lim_{n\to\infty} \left(\frac{n+1}{n}\right)^2 = 1$

Therefore, R = 1. The interval of convergence is (-1, 1). Now we test the endpoints:

x = -1: $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$ converges absolutely (by the alternating series test).
x = 1: $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges (p-series with p = 2 > 1).

Thus, the interval of convergence is [-1, 1].


Limitations of the Ratio Test



The ratio test is a powerful tool, but it has limitations. As mentioned earlier, if the limit of the ratio is 1, the test is inconclusive. In such cases, other convergence tests are needed. Furthermore, the ratio test can be computationally challenging for power series with complex coefficients or intricate patterns in their terms.


Summary



The ratio test provides an efficient method for determining the radius and interval of convergence of a power series. By examining the limit of the ratio of consecutive terms, we can identify the radius of convergence, R. The interval of convergence is then (a - R, a + R), with the endpoints needing separate analysis using other convergence tests. While powerful, the ratio test is not universally applicable, and its limitations must be considered.


FAQs



1. What if the limit of the ratio is 1? If the limit is 1, the ratio test is inconclusive. Other convergence tests, such as the root test, comparison test, or integral test, must be employed.

2. Can the radius of convergence be infinite? Yes, if the limit of the ratio is 0, the radius of convergence is infinite, meaning the power series converges for all real numbers.

3. What does the radius of convergence represent geometrically? The radius of convergence represents the radius of the largest open interval centered at 'a' for which the power series converges absolutely.

4. Why do we need to test the endpoints separately? The ratio test is inconclusive at the endpoints of the interval of convergence. The series might converge conditionally or diverge at these points. Other tests are necessary to determine the convergence at the endpoints.

5. What are some alternative tests for convergence besides the ratio test? The root test, comparison test, limit comparison test, integral test, and alternating series test are some alternatives useful for determining convergence. The choice of test depends on the specific series being examined.

Links:

Converter Tool

Conversion Result:

=

Note: Conversion is based on the latest values and formulas.

Formatted Text:

runge kutta python
pompous meaning
new york multicultural city
what is the lowest prime number
conversion rate celsius to fahrenheit
6 lbs to grams
substitution integral
5 feet 7 inches
thunderbrew recipe
kcr so4 2
74 kg i pounds
baseless assumption
specialization in production
golden muffler
beer lambert law intensity

Search Results:

弹性模量和杨氏模量有什么区别吗? - 知乎 13 Jun 2018 · 可能有些人看了还是不太懂,这里在说一下,除非明确定义,否则一般使用上,都默认杨氏模量就是弹性模量。 弹性模量一般包含四种类型: ①Young’s modulus(Modulus of …

在学位论文中缩写、符号如何使用? - 知乎 13 May 2020 · The program’s graphical user interface was extremely user friendly. The program’s GUI was extremely user friendly. Adenosine triphosphate levels strongly affect cytoskeletal …

信息比率(Informational Ratio)到底怎么计算? - 知乎 信息比率(Informational Ratio)到底怎么计算? Grinold & Kahn的书中把信息比率定义为“残差收益率(Residual Return)”的期望与“残差收益率”标准差的比值,但是许多资料和研… 显示全 …

求助!散热没问题的笔记本CPU为什么会意外降频? - 知乎 这一栏是系统下能抓到intel CPU的所有状态指示,从名字就能看出,这些指示就是来描述CPU性能限制来源的 拿一些比较典型的指示来解释一下吧 基础:(绝大部分玩家会遇到的) …

统计分析中Kappa值的意义是什么? - 知乎 Kappa值用于衡量数据的一致性程度,Kappa值记作 \kappa 。比如分析两名医生对患者诊断结果的一致性程度;分析不同方法对同一批样本检验结果的一致性;可以用Kappa一致性检验进行分 …

logistic回归中的OR值怎么解释? - 知乎 OR值 (odds ratio)又称比值比、优势比。 上图Logistic回归分析结果输出的 OR值,工作年限会对“是否违约”产生显著的负向影响关系, 优势比 (OR值)为0.771,意味着工作年限增加一个单位 …

怎样用SPSS做二项Logistic回归分析?结果如何解释? - 知乎 ②.似然比检验(Likelihood Ratio Test):Logistic模型的估计一般是使用极大似然法,即使得模型的似然函数L达到最大值。 -2lnL被称为Diviance,记为D。 L越大,则D越大,模型预测效果 …

Rate、ratio、proportion,这三个表示比率的单词有什么区别? Rate 通常表示两个不同单位之间的比率。 比如 心率 Heart Rate,一分钟跳多少下 Ratio 通常表示两个相同单位之间的数量关系:桌上有三个苹果,两个橙子,那么苹果和橙子的 比例 是 3:2 …

显示器的DCR、伽玛是什么?怎么调节?哪个好? - 知乎 DCR是动态对比度(Dynamic Contrast Ratio)的简写。 伽马是显示器电光传递函数(Electro-Optical Transfer Function)的一种。 EOTF可以简单理解为数字信号和实际显示亮度的对应关 …

abaqus中建立接触这一分析步直接5u不收敛,有大神来解答一下 … 以下回答是曹金凤老师的《接触非线性分析不收敛? 写给ABAQUS初学者的N个经验》,以下为你摘录部分,相信读完会对你很有帮助。 除此之外,还推荐你阅读江丙云博士的《解决Abaqus …