quickconverts.org

Derive Sin

Image related to derive-sin

Deriving the Sine Function: A Journey Through Calculus



The sine function, a cornerstone of trigonometry, describes the ratio of the opposite side to the hypotenuse in a right-angled triangle. But how do we move beyond this geometric definition and understand the sine function's behavior across all real numbers, not just angles within a right-angled triangle? This requires the power of calculus, specifically utilizing the concept of the unit circle and derivatives. This article will explore how we can derive the derivative of the sine function, sin(x), providing a detailed and accessible explanation for students of calculus.


1. The Unit Circle and Parametric Equations: A Foundation



Our journey begins with the unit circle, a circle centered at the origin (0,0) with a radius of 1. Any point on this circle can be represented by its coordinates (x, y), where x = cos(θ) and y = sin(θ), with θ representing the angle formed between the positive x-axis and the line connecting the origin to the point (x, y). This provides a crucial link between the trigonometric functions and coordinate geometry. We can think of the point (x, y) as tracing a path along the unit circle as θ changes. This path can be described using parametric equations:

x(θ) = cos(θ)
y(θ) = sin(θ)

This parametric representation allows us to treat the trigonometric functions as functions of a continuous variable, θ (or x, for simplicity in later steps), opening the door for calculus.


2. The Derivative as a Rate of Change



The derivative of a function represents its instantaneous rate of change. Geometrically, for a curve, the derivative at a point represents the slope of the tangent line at that point. In the context of the unit circle, the derivative of sin(θ) will tell us how quickly the y-coordinate of the point on the circle is changing with respect to the angle θ.


3. Applying the Definition of the Derivative



To find the derivative of sin(x), we utilize the limit definition of the derivative:

f'(x) = lim (h→0) [(f(x + h) - f(x))/h]

Substituting sin(x) for f(x), we get:

sin'(x) = lim (h→0) [(sin(x + h) - sin(x))/h]

This expression, however, isn't easily solvable in its current form. We need to employ a trigonometric identity to simplify it.


4. Utilizing Trigonometric Identities and Limits



We use the angle sum identity for sine: sin(a + b) = sin(a)cos(b) + cos(a)sin(b). Applying this to our limit expression:

sin'(x) = lim (h→0) [(sin(x)cos(h) + cos(x)sin(h) - sin(x))/h]

Rearranging the terms:

sin'(x) = lim (h→0) [sin(x)(cos(h) - 1)/h + cos(x)(sin(h)/h)]

Now, we can separate the limit into two parts:

sin'(x) = sin(x) lim (h→0) [(cos(h) - 1)/h] + cos(x) lim (h→0) [sin(h)/h]

The limits are fundamental limits in calculus. Through methods such as L'Hopital's rule or geometric arguments, it can be shown that:

lim (h→0) [(cos(h) - 1)/h] = 0
lim (h→0) [sin(h)/h] = 1

Substituting these values back into the equation, we arrive at:

sin'(x) = sin(x) 0 + cos(x) 1 = cos(x)


5. The Derivative of Sine: cos(x)



Therefore, the derivative of sin(x) with respect to x is cos(x). This elegant result demonstrates a fundamental relationship between the sine and cosine functions, highlighting the interconnectedness within trigonometry and calculus. This derivative is crucial for solving various problems involving rates of change, optimization, and modeling periodic phenomena.


Summary



By employing the unit circle, parametric equations, the limit definition of the derivative, and fundamental trigonometric identities, we successfully derived the derivative of the sine function, demonstrating that d/dx[sin(x)] = cos(x). This result is not just a mathematical curiosity; it's a powerful tool used extensively in physics, engineering, and other scientific fields.


FAQs:



1. Why is the unit circle important in deriving the derivative of sin(x)? The unit circle provides a geometric representation that allows us to define sine and cosine as functions of a continuous variable (the angle), crucial for applying the concepts of calculus.

2. Can we derive the derivative of cos(x) similarly? Yes, using a similar process and the angle sum identity for cosine, you can derive that d/dx[cos(x)] = -sin(x).

3. What are some applications of the derivative of sin(x)? Applications include finding the velocity and acceleration of an object undergoing simple harmonic motion, calculating the slope of a sinusoidal curve at any point, and solving optimization problems involving trigonometric functions.

4. What if x is measured in radians? The derivation presented assumes x is in radians. If x is in degrees, you would need to use the conversion factor (π/180) within the derivative.

5. Are there other methods to derive the derivative of sin(x)? Yes, other methods include using the power series expansion of sin(x) and differentiating term by term. However, the method presented here provides a clear geometric intuition and utilizes fundamental concepts of calculus.

Links:

Converter Tool

Conversion Result:

=

Note: Conversion is based on the latest values and formulas.

Formatted Text:

213cm in inches
60 oz to cups
174 libras en kilos
3500 km miles
what is 25 cups
how many tbsp in 8 oz
3 tablespoons in oz
218lb to kg
198 grams to ounces
240 cm to inch
1120 minutes to hours
35oz to grams
153 pounds in kilos
1100 seconds to minutes
108 pounds in kg

Search Results:

Trigonometric Identities - The University of Liverpool cos(A+ B) = cosAcosB sinAsinB (4) cos(A B) = cosAcosB+ sinAsinB (5) sin(A+ B) = sinAcosB+ cosAsinB (6) sin(A B) = sinAcosB cosAsinB (7) tan(A+ B) = tanA+ tanB 1 tanAtanB (8) tan(A …

Dérivée des fonctions trigonométriques - prof.delbecque.org Pour le calcul des valeurs de sin( ) et cos( ), on utilise les grandeurs des côtés de certains triangles remarquables, pour lesquels il est possible de déterminer les longueurs des côtés …

19.Derivative of sine and cosine JJ II - Auburn University h of f(x) = sin x at which the tangent Solution The general slope function for this function is . ts derivative, which is f0(x) = cos x. We get the x-coordinates of the desired points by sol.

handout-calc-trig Master.pdf STRATEGY FOR EVALUATING sinm(x) cosn(x)dx If the power n of cosine is odd (n = 2k + 1), save one cosine factor and use cos2(x) = 1 express the rest of the factors in terms of sine: Z …

Chapitre 14 : Dérivée des fonctions trigonométriques Durant notre cours de mathématiques de 5ème secondaire, nous avons étudié de long et en large les fonctions trigonométriques sinus, cosinus et tangente. Nous aborderons dans ce présent …

Dérivées des fonctions sinus et cosinus En déduire que les fonctions sinus et cosinus sont dérivables en tout point leurs dérivées. 1) A quoi nous fait penser une telle limite ? A un nombre dérivé... D’après l’énoncé, la tangente .Δ à …

Trignometrical Formulae Standard Integrals Standard Integrals sin(A + B) = sin A cos B + cos A sin B sin(A − B) = sin A cos B − cos A sin B cos(A + B) = cos A cos B − sin A sin B cos(A − B) = cos A cos ...

Derivative of sin x - MIT OpenCourseWare Derivative of sin x, Algebraic Proof A specific derivative formula tells us how to take the derivative of a specific function: if f(x) = xn then f (x) = nx n−1 . We’ll now compute a specific formula for …

La r egle de d erivation (sin) ) = cos( sans se prendre la t^ete.. M = (x ; y ) etant ainsi de ni, on pose x = cos( ); y = sin( ). On prolonge ensuite ces deux fonctions sur toute la droite reelle R par 2 -periodicite. Il en resulte en particulier la parite des fonctions …

Dérivées des fonctions sinus et cosinus. - lycee-valin.fr Les fonctions sinus et cosinus sont dérivables sur R et, pour tout réel x, sin0(x) = cos(x) et cos0(x) = sin(x) .

Théorème « Dérivée du sinus - Edugemath Théorème « Dérivée du sinus » Théorème Soit la fonction f : R*→R déterminée par f (x)=sin (x) . Alors f (x)'=cos(x) Démonstration : Démonstration ' (x)=sin' (x) = (x+h)−f (x)

Trigonometric Derivatives - Michigan State University Derivative of sine and cosine. The sine and cosine are important functions describing periodic motion. From the graph y = sin(x) (in blue), let us examine the slope at each point to sketch …

Dérivées des fonctions sinus et cosinus la dérivée de la fonction sinus est la fonction cosinus. On procède de même pour la fonction cosinus. Pour tout h ≠ 0 : = − sin(a). La limite du taux d’accroissement existe et est finie. …

Tableaux des dérivées et primitives et quelques formules en prime Fonctions circulaires réciproques les fonctions sinus et cosinus. O est définie sur sin(x) tan(x) = . cos(x)

Derivatives of Trigonometric Functions At x = 0, sin(x) is increasing, and cos(x) is positive, so it makes sense that the derivative is a positive cos(x). On the other hand, just after x = 0, cos(x) is decreasing, and sin(x) is positive, …

Derivatives of Sine and Cosine - MIT OpenCourseWare Derivatives of Sine and Cosine Using the Creating the Derivative mathlet, select the (default) function f(x) = sin(x) from the pull-down menu in the lower left corner of the screen. Do not …

Calculs de dérivées. Complémen - Meilleur en Maths Si u (x)=ax+b avec a ∈R* et b∈R , alors la fonction f définie sur R par f (x)=sin(ax+b) est dérivable sur R et f ' ( x)=[sin(ax+b)]'=[ f (ax+b)]'=a cos(ax+b) .

DERIVATIVES OF TRIGONOMETRIC FUNCTIONS We will always regard the angle x as being in radians. To compute the derivatives of these functions, we start with sin x and cos x. The derivatives of the other trigonometric functions will …

Derivatives of Sine and Cosine Functions - University of Waterloo Derivative of sin(x From the Maple investigation, we see that the first derivative of f(x) = sin(x) has the following shape