quickconverts.org

Derivative Of Moment Generating Function

Image related to derivative-of-moment-generating-function

Understanding the Derivative of a Moment Generating Function



The moment generating function (MGF) is a powerful tool in probability and statistics. It provides a concise way to encapsulate all the moments (mean, variance, skewness, etc.) of a probability distribution. While the MGF itself is useful, its derivative reveals even more about the distribution, offering a direct route to calculating these crucial moments without the often tedious process of integration. This article will demystify the concept of the derivative of a moment generating function and show its practical applications.

1. What is a Moment Generating Function?



The moment generating function, M<sub>X</sub>(t), for a random variable X is defined as the expected value of e<sup>tX</sup>:

M<sub>X</sub>(t) = E[e<sup>tX</sup>] = ∫<sub>-∞</sub><sup>∞</sup> e<sup>tx</sup>f(x)dx (for continuous random variables)

M<sub>X</sub>(t) = Σ<sub>x</sub> e<sup>tx</sup>P(X=x) (for discrete random variables)

where f(x) is the probability density function (PDF) for continuous variables and P(X=x) is the probability mass function (PMF) for discrete variables. The "t" is a dummy variable; it's not a parameter of the distribution itself.

The beauty of the MGF lies in its ability to generate moments. The n<sup>th</sup> moment (E[X<sup>n</sup>]) can be found by taking the n<sup>th</sup> derivative of M<sub>X</sub>(t) with respect to 't' and evaluating it at t=0.

2. Derivatives and Moments: The Connection



The magic happens when we differentiate the MGF. Let's consider the first few derivatives:

First Derivative: M<sub>X</sub>'(t) = d/dt [E[e<sup>tX</sup>]] = E[d/dt (e<sup>tX</sup>)] = E[Xe<sup>tX</sup>]
Second Derivative: M<sub>X</sub>''(t) = d/dt [E[Xe<sup>tX</sup>]] = E[X<sup>2</sup>e<sup>tX</sup>]
Third Derivative: M<sub>X</sub>'''(t) = d/dt [E[X<sup>2</sup>e<sup>tX</sup>]] = E[X<sup>3</sup>e<sup>tX</sup>]

And so on. Notice the pattern: the n<sup>th</sup> derivative evaluated at t=0 gives the n<sup>th</sup> moment:

M<sub>X</sub><sup>(n)</sup>(0) = E[X<sup>n</sup>]

This is the core principle: the derivatives of the MGF directly provide the moments of the distribution.

3. Practical Example: Exponential Distribution



Let's consider an exponential distribution with parameter λ. Its PDF is f(x) = λe<sup>-λx</sup> for x ≥ 0. The MGF is:

M<sub>X</sub>(t) = ∫<sub>0</sub><sup>∞</sup> e<sup>tx</sup>λe<sup>-λx</sup>dx = λ∫<sub>0</sub><sup>∞</sup> e<sup>-(λ-t)x</sup>dx = λ/(λ-t) (for t < λ)

Now, let's find the mean (first moment):

M<sub>X</sub>'(t) = d/dt [λ/(λ-t)] = λ/(λ-t)<sup>2</sup>
M<sub>X</sub>'(0) = λ/λ<sup>2</sup> = 1/λ = E[X] (Mean)

For the variance (requires the second moment):

M<sub>X</sub>''(t) = 2λ/(λ-t)<sup>3</sup>
M<sub>X</sub>''(0) = 2/λ<sup>2</sup> = E[X<sup>2</sup>]
Variance = E[X<sup>2</sup>] - (E[X])<sup>2</sup> = 2/λ<sup>2</sup> - (1/λ)<sup>2</sup> = 1/λ<sup>2</sup>

This demonstrates how easily we can obtain the mean and variance using the derivatives of the MGF.

4. Advantages of Using Derivatives of MGF



Efficiency: Calculating moments directly from the PDF often involves complex integrations. The MGF offers a more streamlined approach.
Clarity: The process of differentiation is generally less error-prone than complex integration.
General Applicability: The method applies to both discrete and continuous distributions.

5. Key Takeaways



The derivative of the moment generating function provides a powerful and efficient method for calculating the moments of a probability distribution. This avoids the often cumbersome direct calculation using integration or summation. Mastering this technique simplifies statistical analysis and deepens the understanding of probability distributions.


Frequently Asked Questions (FAQs)



1. What if the MGF doesn't exist? Some distributions don't have a moment generating function. In such cases, other techniques for calculating moments are needed.

2. Can I use the MGF to find all moments? Theoretically, yes, provided the MGF exists and is differentiable infinitely many times. However, practically, higher-order derivatives can become computationally intensive.

3. Are there limitations to using the derivative of the MGF? Yes, calculating higher-order derivatives can become complex. Additionally, the MGF might not exist for all distributions.

4. What are some other applications of the MGF? Beyond moment calculation, the MGF is used in proving limit theorems (like the central limit theorem), characterizing distributions, and determining the distribution of sums of independent random variables.

5. What if my distribution is not standard? The process remains the same; you first find the MGF for your specific distribution and then proceed with differentiation. The complexity of the derivatives will depend on the form of the MGF.

Links:

Converter Tool

Conversion Result:

=

Note: Conversion is based on the latest values and formulas.

Formatted Text:

you saw that
100 080
cuban revolution
density of pluto
fool me once shame on you
marcus antonius gnipho
how old are you in high school
chlorite ion
the opposite of present
curtain call in a sentence
on paper meaning
merge layers photoshop
complex numbers in electrical circuits
text to speech annoying
atomic distance

Search Results:

用电脑玩MC显示PCL2权限不足是怎么回事? - 知乎 12 Sep 2024 · 各位大佬,我只有一个计算机用户,网上给软件权限的教程都试过了,不知道为什么MC整合包还是没权限,求教

导数为什么叫导数? - 知乎 8 Feb 2020 · 导数 (derivative),最早被称为 微商,即微小变化量之商,导数一名称是根据derivative的动词derive翻译而来,柯林斯上对derive的解释是: If you say that something such as a word …

如何从物理意义上理解NS方程? - 知乎 希望有大神能形象的用通俗易懂的方法描述一下NS方程的对流项,扩散项,源项等。是否对于不同的项需要使用…

请教一下关于QPCR溶解曲线的问题? - 知乎 而我们实际分析使用的Derivative Melt Curve Plot,也就是常说的溶解峰值,是溶解曲线导数的负数比温度。 取导展示的是溶解的速率,产生的峰值就是大批量SYBR荧光信号消失的地方,即 …

是谁将『derivative』翻译为『导数』的? - 知乎 不知道。 不过我祖父杨德隅编写的1934年版的“初等微分积分学”中,是将 导数 翻译成了微系数。因为此教材在当年传播甚广,因此至少当时并没有把derivatives普遍翻译成导数

Calculus里面的differentiable是可导还是可微? - 知乎 9 Oct 2018 · 多元函数 里面不谈可导这个概念,只说可偏导,对应英文为partial derivative。 多元函数也有可微的概念,对应英文为differentiate,但是多元函数里面的可偏导和可微不等价。

偏导数符号 ∂ 的正规读法是什么? - 知乎 很神奇 一起上完课的中国同学不约而同的读par (Partial derivative) 教授一般是读全称的,倒是有个华人教授每次都是一边手写一边说 this guy。

随体导数怎么理解呢? - 知乎 本是数学上的一个概念—— 全导数 ( total derivative ),相对 偏导数 ( partial derivative )而言。然后放到物理里特定的 流体力学 场景,给出了新名称—— 物质导数 ( material derivative …

simulink如何设置微分模块derivative初值? - 知乎 simulink如何设置微分模块derivative初值? 想由已知的运动行程求导获得速度和加速度,但求导结果的初值都是从0开始,零点附近出现了数值跳动导致了求导结果在零点处很大。

为什么导数和微分的英日文术语如此混乱? - 知乎 30 Jun 2017 · 给出的方法一真不错~ 我是这么梳理这些概念和术语的: 首先,「导」这个字在汉语术语中是使用得最多的。它不仅用于导函数、单点导数这些结果,还用于「求导」这个过程 …