=
Note: Conversion is based on the latest values and formulas.
How do you evaluate #[cos(pi/5) * Cos(2pi/5)]#? - Socratic 18 Apr 2016 · How do you show that #(costheta)(sectheta) = 1# if #theta=pi/4#? See all questions in Trigonometric Functions of Any Angle Impact of this question
What is the period and amplitude for #cos(pi/5)(x)#? - Socratic 25 Jul 2018 · As below. Standard form of cosine function is y = A cos (Bx - C) + D Given y = cos ((pi/5) x) A = 1, B = pi/5, C = D = 0 Amplitude = |A| = 1 Period = (2 pi) / |B ...
Simplify using the double angle formula? cos^2(2pi/5) - Socratic 7 Apr 2018 · Simplify using the double angle formula? #cos^2(2pi/5) - sin^2(2pi/5)#
How do you solve #sin(pi/5-pi/2)#? - Socratic 11 May 2018 · #sin(pi/5 - pi/2) = sin(36^circ - 90^circ) = cos(90 - (36^circ - 90^circ)) = cos(180^circ-36^circ) = cos 144^circ # Strap in, this is where it gets interesting. First we note #cos(3 theta)=cos(2 theta)# has solutions #3 theta = pm 2 theta + 360^circ k,# integer #k# , or just using the subsuming minus sign,
How do you evaluate #cos^-1(cos((17 pi)/5))#? - Socratic 16 May 2016 · (17pi)/5 An inverse function might be single-valued or many-valued. But applying an inverse function and the function in succession, over an operand, returns the operand.
Given #cos(2pi/5) = (sqrt(5)-1)/4#, what is cos(3pi/5)? - Socratic 10 Mar 2016 · If #sec theta = 4#, how do you use the reciprocal identity to find #cos theta#? How do you find the domain and range of sine, cosine, and tangent? What quadrant does #cot 325^@# lie in and what is the sign?
Let z1 = 2(cos 5pi/6 + i sin 5pi/6) and z2 = 5(cos pi/3 + i sin pi/3 ... 25 Nov 2016 · Let z1 = 2(cos 5pi/6 + i sin 5pi/6) and z2 = 5(cos pi/3 + i sin pi/3), how do you find z1z2? Trigonometry The Polar System The Trigonometric Form of Complex Numbers 1 Answer
How do you solve #Cos ( x + pi/6 ) = -0.5 # over the ... - Socratic 14 Jul 2016 · How do you solve #Cos ( x + pi/6 ) = -0.5 # over the interval 0 to 2pi? Trigonometry Trigonometric Identities and Equations Solving Trigonometric Equations
What is the value of #cos(pi/7) cos(pi/5)-sin(pi/7) sin(pi/5) 28 May 2016 · Apply the trig identity: cos (a =b) = cos a.cos b - sin a.sin b. #cos (pi/7)cos (pi/5) - sin (pi/7).sin (pi/5) = cos (pi/7 + pi/5) =#
Given cos(pi/2-x)=3/5, cosx=4/5 to find the remaining ... - Socratic 5 Jan 2017 · The identity for the cosine of the difference of two angles is: cos(A - B) = cos(A)cos(B) + sin(A)sin(B) Given: A = pi/2 and B = x cos(pi/2 - x) = cos(pi/2)cos(x) + sin(pi/2)sin(x) The first term on the right disappears, because cos(pi/2) = 0, and the second term on the right becomes sin(x), because sin(pi/2) = 1: cos(pi/2 - x) = sin(x) = 3/5 sin(x) = 3/5 tan(x) …