quickconverts.org

Variance Formula

Image related to variance-formula

Understanding the Variance Formula: A Simple Guide



Understanding data is crucial in many fields, from finance and science to marketing and social sciences. One of the most important measures of data dispersion, or spread, is variance. It tells us how far individual data points are spread out from the mean (average). A high variance indicates data points are widely scattered, while a low variance means they are clustered closely around the mean. This article will demystify the variance formula, making it accessible to everyone.

1. What is Variance?



Variance measures the average squared deviation from the mean. Why squared deviation? Simply summing the deviations from the mean will always result in zero, as positive and negative deviations cancel each other out. Squaring the deviations ensures all values are positive, providing a meaningful measure of dispersion. The result is then averaged to provide a single, representative value of spread. Larger variance indicates greater variability in the data set.

2. The Population Variance Formula



When you have data for the entire population (e.g., the height of every student in a specific school), you use the population variance formula:

σ² = Σ(xi - μ)² / N

Where:

σ² (sigma squared) represents the population variance.
Σ (sigma) denotes summation (adding up all values).
xi represents each individual data point.
μ (mu) represents the population mean (average).
N represents the total number of data points in the population.

Let's break it down:

1. (xi - μ): This calculates the deviation of each data point (xi) from the population mean (μ).
2. (xi - μ)²: This squares each deviation, ensuring positive values.
3. Σ(xi - μ)²: This sums all the squared deviations.
4. Σ(xi - μ)² / N: This divides the sum of squared deviations by the total number of data points (N), providing the average squared deviation – the variance.

Example: Imagine the heights (in cm) of all five students in a class are: 160, 165, 170, 175, 180. The mean (μ) is 170 cm. Calculating the variance:

1. Deviations: (-10, -5, 0, 5, 10)
2. Squared Deviations: (100, 25, 0, 25, 100)
3. Sum of Squared Deviations: 250
4. Variance (σ²): 250 / 5 = 50 cm²

3. The Sample Variance Formula



More often, we work with a sample of data (e.g., the height of a randomly selected group of students from a large school) to estimate the population variance. In this case, we use the sample variance formula:

s² = Σ(xi - x̄)² / (n - 1)

Where:

s² represents the sample variance.
x̄ (x-bar) represents the sample mean.
n represents the total number of data points in the sample.

Notice the denominator is (n - 1) instead of n. This is called Bessel's correction. It provides an unbiased estimator of the population variance. Using 'n' would underestimate the population variance, especially with small samples.

Example: Let's say we have a sample of three heights: 160, 165, 170. The sample mean (x̄) is 165 cm.

1. Deviations: (-5, 0, 5)
2. Squared Deviations: (25, 0, 25)
3. Sum of Squared Deviations: 50
4. Variance (s²): 50 / (3 - 1) = 25 cm²

4. Standard Deviation: The Square Root of Variance



While variance is a useful measure, its units are squared (cm² in our examples). To get a measure of dispersion in the original units, we calculate the standard deviation. The standard deviation is simply the square root of the variance:

Population Standard Deviation (σ) = √σ²
Sample Standard Deviation (s) = √s²

5. Key Takeaways



Variance measures the average squared deviation from the mean, indicating data spread.
The population variance formula uses 'N' while the sample variance formula uses '(n-1)' (Bessel's correction).
Standard deviation is the square root of the variance, providing a measure of spread in the original units.
High variance signifies greater variability, while low variance indicates data points cluster closely around the mean.

Frequently Asked Questions (FAQs)



1. Why do we square the deviations? Squaring ensures all values are positive, preventing positive and negative deviations from canceling each other out.

2. What is the difference between population and sample variance? Population variance uses data from the entire population, while sample variance uses data from a subset and includes Bessel's correction for unbiased estimation.

3. Why use (n-1) in the sample variance formula? This is Bessel's correction, which provides an unbiased estimate of the population variance, particularly crucial with smaller sample sizes.

4. What is the relationship between variance and standard deviation? Standard deviation is the square root of the variance, expressing the spread in the original units of measurement.

5. Can variance be negative? No, variance is always non-negative because it involves squaring the deviations. A variance of zero indicates all data points are identical.

Links:

Converter Tool

Conversion Result:

=

Note: Conversion is based on the latest values and formulas.

Formatted Text:

michael jackson number of grammys
phet simulations circuit
105 to cm
cross current gas exchange
fad electron carrier
why do global variables make a program difficult to debug
tropical desert location
65 mph to kmh
springtime
batista cuba dictator
may i say
python 3 integer division
synchronous generator power factor
beatles first drummer
the fault in our stars peter van houten

Search Results:

如何理解管理会计中的Flexible-Budget? - 知乎 Flexible—Budget, 翻译成中文就是弹性预算。 首先第一个问题,什么是弹性预算? 企业预算体系中各种固定预算的编制是以一定的产销量为基础的。但企业内外部条件的变化往往使实际产销 …

covariance(协变)和 correlation(相关性)如何理解他们的区 … Covariance 是绝对值,体现了两组合之间绝对相关性的大小; Correlation 是在两组数据基础上的相对值,消除了数据组本身大小对相关性的影响(eliminate the effects of size),着重描述其 …

(Variance Swap)方差互换是什么?如何理解? - 知乎 所以Variance Swap最核心的问题就是: 该怎么去定variance strike? 理论上来说,fair variance strike 是应该等于 risk-neutral expected value of the return variance,所以当我们假设stock …

Realized Volatility不同数据频率 差异巨大 如何解读这一现象? - 知乎 第四,不知道你用什么formula计算的realized volatility,你的2 day change是怎么定义的。 正确做法是,把两天的log price process每5min分一个点,然后相差再平方求和,这个是这两天 …

为什么样本方差(sample variance)的分母是 n-1? - 知乎 先把问题完整地描述下。 如果已知随机变量 的期望为 ,那么可以如下计算方差 : 上面的式子需要知道 的具体分布是什么(在现实应用中往往不知道准确分布),计算起来也比较复杂。 所以 …

为什么样本方差(sample variance)的分母是 n-1? - 知乎 让我们再回到样本方差(Sample Variance)的分母(n-1)上来。 你既然在看这个问题,那就已经知道了方差 \sigma^ {2} 的计算公式

R统计绘图-VPA (变差分解分析) 27 Apr 2022 · 使用rda ()进行偏RDA分析,然后自行计算指定环境因子解释率以及不同环境因子方差解释率重叠部分。此部分也有两种计算方式。 R统计-VPA分析 (RDA/CCA) 文中记录了先计 …

总体方差与样本方差的区别是什么呢?为什么样本方差是n-1 分之 … 换句话说,当 E\left (S^2\right) = \sigma^2 , \sigma^2 为总体方差(population variance),那么 S^2 就被称为无偏估计(unbiased estimator)。 这里我们设定总体平均为 \mu ,总体方差为 …

如何理解深度学习源码里经常出现的logits? - 知乎 tensorflow/tensorflowlogit原本是一个函数,它是sigmoid函数(也叫标准logistic函数) p (x) = \frac {1} {1+e^ {-x}} 的反函数: logit (p) = \log\left (\frac {p} {1-p}\right) 。logit这个名字的来源即为 log …

请解释下variational inference? - 知乎 理论上讲,BBVI是universal的(见式(4)),只要variance控制得好,它可以处理任何VI问题。 幸运的是,去年ICLR同时抛出了两篇文章 [7,8],都是用了Gumbel-Softmax distribution …