quickconverts.org

Ratio Test Power Series

Image related to ratio-test-power-series

The Ratio Test for Power Series: Determining Convergence and Radius of Convergence



Power series, infinite sums of the form $\sum_{n=0}^{\infty} c_n(x-a)^n$, are fundamental objects in calculus and analysis. Understanding their convergence is crucial for many applications. While various tests exist, the ratio test provides a particularly elegant and powerful method for determining the interval of convergence of a power series, specifically its radius of convergence. This article will explore the ratio test's application to power series, explaining its mechanics and illustrating its use through examples.


Understanding the Ratio Test



The ratio test examines the limit of the ratio of consecutive terms in a series. For a general series $\sum_{n=0}^{\infty} a_n$, the ratio test states:

1. If $\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| = L < 1$, the series converges absolutely.
2. If $\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| = L > 1$ or $\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| = \infty$, the series diverges.
3. If $\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| = L = 1$, the test is inconclusive.


Applying the Ratio Test to Power Series



When applying the ratio test to a power series $\sum_{n=0}^{\infty} c_n(x-a)^n$, we treat the terms $a_n = c_n(x-a)^n$. The ratio becomes:

$\left|\frac{a_{n+1}}{a_n}\right| = \left|\frac{c_{n+1}(x-a)^{n+1}}{c_n(x-a)^n}\right| = |x-a| \left|\frac{c_{n+1}}{c_n}\right|$

The limit as $n \to \infty$ then depends on the behavior of $\left|\frac{c_{n+1}}{c_n}\right|$. Let's denote:

$R = \lim_{n\to\infty} \left|\frac{c_n}{c_{n+1}}\right|$ (Note: this is the reciprocal of the usual limit). This limit, R, represents the radius of convergence.


Determining the Radius and Interval of Convergence



Using the ratio test on the power series, we find that the series converges absolutely when:

$|x-a| \lim_{n\to\infty} \left|\frac{c_{n+1}}{c_n}\right| < 1$

This simplifies to:

$|x-a| < R$

This inequality defines an interval centered at a with a radius of R. The interval of convergence is then (a - R, a + R). We must also test the endpoints, x = a - R and x = a + R, separately using other convergence tests (e.g., the alternating series test, p-series test) since the ratio test is inconclusive at these points.


Example: Finding the Radius and Interval of Convergence



Let's consider the power series: $\sum_{n=1}^{\infty} \frac{x^n}{n^2}$

Here, $c_n = \frac{1}{n^2}$, $a = 0$. We compute:

$\lim_{n\to\infty} \left|\frac{c_n}{c_{n+1}}\right| = \lim_{n\to\infty} \left|\frac{\frac{1}{n^2}}{\frac{1}{(n+1)^2}}\right| = \lim_{n\to\infty} \left(\frac{n+1}{n}\right)^2 = 1$

Therefore, R = 1. The interval of convergence is (-1, 1). Now we test the endpoints:

x = -1: $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$ converges absolutely (by the alternating series test).
x = 1: $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges (p-series with p = 2 > 1).

Thus, the interval of convergence is [-1, 1].


Limitations of the Ratio Test



The ratio test is a powerful tool, but it has limitations. As mentioned earlier, if the limit of the ratio is 1, the test is inconclusive. In such cases, other convergence tests are needed. Furthermore, the ratio test can be computationally challenging for power series with complex coefficients or intricate patterns in their terms.


Summary



The ratio test provides an efficient method for determining the radius and interval of convergence of a power series. By examining the limit of the ratio of consecutive terms, we can identify the radius of convergence, R. The interval of convergence is then (a - R, a + R), with the endpoints needing separate analysis using other convergence tests. While powerful, the ratio test is not universally applicable, and its limitations must be considered.


FAQs



1. What if the limit of the ratio is 1? If the limit is 1, the ratio test is inconclusive. Other convergence tests, such as the root test, comparison test, or integral test, must be employed.

2. Can the radius of convergence be infinite? Yes, if the limit of the ratio is 0, the radius of convergence is infinite, meaning the power series converges for all real numbers.

3. What does the radius of convergence represent geometrically? The radius of convergence represents the radius of the largest open interval centered at 'a' for which the power series converges absolutely.

4. Why do we need to test the endpoints separately? The ratio test is inconclusive at the endpoints of the interval of convergence. The series might converge conditionally or diverge at these points. Other tests are necessary to determine the convergence at the endpoints.

5. What are some alternative tests for convergence besides the ratio test? The root test, comparison test, limit comparison test, integral test, and alternating series test are some alternatives useful for determining convergence. The choice of test depends on the specific series being examined.

Links:

Converter Tool

Conversion Result:

=

Note: Conversion is based on the latest values and formulas.

Formatted Text:

18cm in inches convert
175cm to in convert
15 cm convert
45 cm inches convert
855 cm to inches convert
295 cm to in convert
65 cm to inches convert
685 cm to inches convert
268 cm to inches convert
183 cm to inches convert
127cm in inches convert
122cm to in convert
45 cm to in convert
45cm to inches convert
213 cm in inches convert

Search Results:

Rate、ratio、proportion,这三个表示比率的单词有什么区别? Ratio 通常表示两个相同单位之间的数量关系:桌上有三个苹果,两个橙子,那么苹果和橙子的 比例 是 3:2 The ratio of apples to oranges is 3:2. Proportion 通常用于描述 部分与整体 的关 …

logistic回归中的OR值怎么解释? - 知乎 OR值 (odds ratio)又称比值比、优势比。 上图Logistic回归分析结果输出的 OR值,工作年限会对“是否违约”产生显著的负向影响关系, 优势比 (OR值)为0.771,意味着工作年限增加一个单位 …

英特尔CPU 可以调整的ring ratio (ring 频率)是什么? - 知乎 9 Oct 2022 · Auto的意思基本是和CPU Ratio同步一起调节,也可以单独调节。 说它和CPU Cache相关, 是因为Ring Bus的倍频器和CPU LLC(L3,最后最大的缓存)公用。 所以Ring …

如何通俗的理解sortino ratio(索提诺比率)? - 知乎 索提诺比率(Sortino Ratio)可比夏普比率(Sharpe Ratio)和卡玛比率(Calmar Ratio),都是风险调整后收益比率,因此分子都是收益指标,分母都是风险指标。 索提诺比率的核心是, …

市盈率高好还是低好?多少合理? - 知乎 2000年互联网泡沫之前,道琼斯工业指数市盈率也高达60倍,随后就是一路下探,重新回到30倍以内的合理区间。所以,也有人戏称60倍以上市盈率为 “市梦率”。 市盈率高好还是低好? 市盈 …

Safety-first ratio与Shortfall risk? - 知乎 注:Safety-first ratio 与sharpe ratio比较相似,中是无风险收益率,而SFRatio中是最低可接受的临界收益。 Shortfall risk (亏空风险): the risk that portfolio value or return will fall below the …

nominal,ordinal,interval,ratio variable怎么区分?请用中文回答 最后Ratio,就是顾名思义,可以用来做比例的比较,几倍几倍这样,做定量的比较。 我个人感觉,它是Interval的升级版,就是当数字0具有意义的时候,就用它。 就像,收入为0(也就是穷 …

【凝聚态物理】什么是wilson ratio? - 知乎 这样我们可以发现那一堆物理学常数就是为了把自由电子的Wilson ratio设为1。 那为什么说Wilson ratio可以反映出电子体系相互作用的强度呢,这样从朗道-费米液体理论说起。

显示器的DCR、伽玛是什么?怎么调节?哪个好? - 知乎 DCR是动态对比度(Dynamic Contrast Ratio)的简写。 伽马是显示器电光传递函数(Electro-Optical Transfer Function)的一种。 EOTF可以简单理解为数字信号和实际显示亮度的对应关 …

炭材料的拉曼图中得出D/G的大小能说明什么? - 知乎 就是想知道具体的这个D/G的意义,还有就是拉曼的分析的意义,看了半天也不懂。