=
Note: Conversion is based on the latest values and formulas.
Estimating Multinomial Logit Models • logitr - GitHub Pages This vignette demonstrates an example of how to use the logitr() function to estimate multinomial logit (MNL) models with preference space and WTP space utility parameterizations.
Utility Models in the Preference & WTP Space • logitr - GitHub … Helveston, John Paul, Elea McDonnell Feit, and Jeremy J. Michalek. 2018. “ Pooling stated and revealed preference data in the presence of RP endogeneity.” Transportation Research Part B: Methodological 109: 70–89.
Package index • logitr - GitHub Pages Glance a logitr class object. confint. Extract Model Confidence Interval. glance. Glance a logitr class object. model.frame. Extracting the Model Frame from a Formula or Fit. model.matrix. Construct Design Matrices. tidy. Tidy a logitr class object. Example Data Sets . Descriptions of data included with this package. yogurt
Predicting Probabilities and Outcomes with Estimated Models • logitr mnl_wtp <-logitr (data = yogurt, outcome = 'choice', obsID = 'obsID', pars = c ('feat', 'brand'), scalePar = 'price', numMultiStarts = 10) probs_mnl_wtp <-predict (mnl_wtp, newdata = data, obsID = "obsID", interval = "confidence") probs_mnl_wtp #> obsID predicted_prob predicted_prob_lower predicted_prob_upper #> 49 13 0.43686141 0.41571405 0. ...
Estimating Weighted Logit Models • logitr - GitHub Pages This vignette demonstrates an example of how to use the logitr() function with the weights argument to estimate weighted logit models.
logitr - GitHub Pages logitr: Fast Estimation of Multinomial (MNL) and Mixed Logit (MXL) Models with Preference Space and Willingness to Pay Space Utility Parameterizations. The latest version includes support for: Multinomial logit (MNL) models; Mixed logit (MXL) models …
Estimating Mixed Logit Models • logitr - GitHub Pages This vignette demonstrates an example of how to use the logitr() function to estimate mixed logit (MXL) models with preference space and WTP space utility parameterizations.
Basic Usage • logitr - GitHub Pages Models are specified and estimated using the logitr() function. The data argument should be set to the data frame containing the data, and the outcome and obsID arguments should be set to the column names in the data frame that correspond to the dummy-coded outcome (choice) variable and the observation ID variable, respectively.
The main function for estimating logit models — logitr • logitr logitr.Rd Use this function to estimate multinomial (MNL) and mixed logit (MXL) models with "Preference" space or "Willingness-to-pay" (WTP) space utility parameterizations. The function includes an option to run a multistart optimization loop with random starting points in each iteration, which is useful for non-convex problems like MXL models ...
Estimating Models with Interactions • logitr - GitHub Pages To add interactions between covariates in your model, you can add additional arguments in the pars vector in the logitr() function separated by the * symbol. For example, let’s say we want to interact price with feat in the following model: