quickconverts.org

Integral Of Ln X 3

Image related to integral-of-ln-x-3

Unveiling the Integral of ln(x³)



This article delves into the intricacies of evaluating the definite and indefinite integral of ln(x³), a seemingly simple yet subtly challenging problem in calculus. We will explore various integration techniques, provide step-by-step solutions, and address common misconceptions surrounding this integral. Our goal is to equip readers with a thorough understanding of the process and the underlying mathematical principles.

1. Understanding the Problem: ∫ln(x³) dx



The integral ∫ln(x³) dx represents the area under the curve of the function y = ln(x³) with respect to x. Directly integrating ln(x³) is not straightforward; we need to employ a technique called integration by parts. Before we do that, let's simplify the problem using logarithmic properties. Recall that ln(aᵇ) = b ln(a). Therefore, ln(x³) simplifies to 3ln(x). Our problem now becomes:

∫3ln(x) dx = 3∫ln(x) dx

This simplification significantly streamlines the integration process.

2. Integration by Parts: The Key Technique



Integration by parts is a powerful technique used to integrate the product of two functions. It's derived from the product rule of differentiation and is stated as follows:

∫u dv = uv - ∫v du

To apply this to ∫ln(x) dx, we strategically choose our 'u' and 'dv':

u = ln(x) => du = (1/x) dx
dv = dx => v = x

Substituting these into the integration by parts formula, we get:

∫ln(x) dx = x ln(x) - ∫x (1/x) dx

This simplifies to:

∫ln(x) dx = x ln(x) - ∫1 dx = x ln(x) - x + C

Where 'C' is the constant of integration. Remember, this is the integral of ln(x), not ln(x³).

3. Solving the Original Integral: ∫ln(x³) dx



Now, we can substitute our result back into the simplified equation from section 1:

3∫ln(x) dx = 3(x ln(x) - x + C) = 3x ln(x) - 3x + 3C

Since 3C is still an arbitrary constant, we can simplify it to just 'C':

∫ln(x³) dx = 3x ln(x) - 3x + C


4. Definite Integrals and Practical Applications



Let's consider a definite integral: Find the area under the curve y = ln(x³) from x = 1 to x = e.

We use the result from the previous section:

∫₁ᵉ ln(x³) dx = [3x ln(x) - 3x]₁ᵉ = (3e ln(e) - 3e) - (3(1) ln(1) - 3(1)) = (3e - 3e) - (0 - 3) = 3

Therefore, the area under the curve y = ln(x³) from x = 1 to x = e is 3 square units. This illustrates a practical application of the integral – calculating areas under curves, which has applications in various fields like physics and engineering.


5. Conclusion



Evaluating the integral of ln(x³) requires a combination of logarithmic properties and integration by parts. By simplifying the integrand and carefully applying the integration by parts formula, we arrived at the solution: 3x ln(x) - 3x + C. Understanding this process allows us to solve a range of similar integrals involving logarithmic functions.


FAQs



1. Why is the constant of integration 'C' important? The constant 'C' accounts for the fact that the derivative of any constant is zero. Therefore, infinitely many functions can have the same derivative, differing only by a constant.

2. Can I use other integration techniques besides integration by parts? For this specific integral, integration by parts is the most efficient and straightforward method. Other techniques are less suitable.

3. What is the domain of ln(x³)? The natural logarithm is only defined for positive arguments, so the domain of ln(x³) is (0, ∞).

4. What happens if I try to integrate ln(x³) directly without simplification? You would still arrive at the same answer, but the process would be significantly more cumbersome and prone to error.

5. How can I check my answer? Differentiate your result (3x ln(x) - 3x + C). If the derivative is ln(x³), your integration is correct. Applying the product rule and chain rule will verify this.

Links:

Converter Tool

Conversion Result:

=

Note: Conversion is based on the latest values and formulas.

Formatted Text:

58 centimeters convert
108cm convert
600 cm convert
54cm to inches convert
30cm inches convert
228cm in inches convert
16 centimetros en pulgadas convert
154 cm to inches convert
230 cm to inches convert
cuanto es 23 cm en pulgadas convert
130 cm to inch convert
64 cm in convert
126cm convert
160cm inches convert
242cm in inches convert

Search Results:

İntegral-Değişken Değiştirme Yöntemi Çözümlü Sorular 7 Apr 2014 · 1) ∫ (2x+1) 7 dx ifadesinin eşiti nedir? Çözüm 2x+1=u diyelim bu ifadenin türevi 2 dir o zaman ifadeyi 2.dx=du dersek dx=du/2 olur o zaman yeni

Çözümlü İntegral Soruları Pdf -136 adet - MatematikTutkusu.com 22 Nov 2010 · Ahmet Kayha hocanın hazırlamış olduğu pdf formatında ayrıntılı çözümlerin bulunduğu pdf dökümanının indirmek için tıklayınız. link . Gitttiğini web

İntegral Konu anlatımı pdf indir - MatematikTutkusu.com 22 Nov 2010 · Ahmet Kayha hocanın hazırlamış olduğu İntegral Konu anlatımı pdf formatında ayrıntılı anlatımların bulunduğu dökümanının indirmek için tıklayınız.

İntegral soruları - matematiktutkusu.com 18 Apr 2011 · 6. Yine kısmi integral kullanacağız. cosx dx = du => u = sinx x = v => dx = dv Buna göre ∫x cosx dx = x sinx - ∫ sinx dx = x sinx + cosx + c

integral=> alan hesabı acil! - MatematikTutkusu.com 7 Jun 2011 · integral alan istersen bu konuyu 12. sınıf matematik soruları forumunda açtı Cevap: 4 Son mesaj : 05 Nis 2013, 19:03

İntegral - matematiktutkusu.com 30 May 2011 · 1-) ∫ (2 x - e x / 4 )dx ifadesinin eşiti nedir? cevap:2 üzeri x-2 bölü ln2 - e üzeri x bölü 4 + c 2-) ∫ (√x-1 / x)dx ifadesinin eşit

İmproper İntegral - MatematikTutkusu.com 19 Mar 2012 · f (x) ve g (x) fonksiyonlarının oranının x sonsuza giderken (x çok büyük değerler alırken) limiti pozitif bir reel sayı çıkarsa, bu fonksiyonlar çok büyük değerler için aynı davranışı …

Çift katlı integral - MatematikTutkusu.com 2 Jun 2012 · Çift katlı integral kullanarak yarıçapı a olan kürenin hacminin (4.pi.a³)/3 olduğunu nasıl gösteririz?

c – 为什么INTEGRAL_MAX_BITS会返回小于64的值?-CSDN社区 12 Sep 2019 · 以下内容是CSDN社区关于c – 为什么INTEGRAL_MAX_BITS会返回小于64的值?相关内容,如果想了解更多关于其他技术讨论专区社区其他内容,请访问CSDN社区。

Temel İntegral Alma Kuralları Formülleri - MatematikTutkusu.com 18 Feb 2011 · Integral alma kuralları istersen bu konuyu 12. sınıf matematik soruları forumunda açtı 4