quickconverts.org

Derivative Of Moment Generating Function

Image related to derivative-of-moment-generating-function

Understanding the Derivative of a Moment Generating Function



The moment generating function (MGF) is a powerful tool in probability and statistics. It provides a concise way to encapsulate all the moments (mean, variance, skewness, etc.) of a probability distribution. While the MGF itself is useful, its derivative reveals even more about the distribution, offering a direct route to calculating these crucial moments without the often tedious process of integration. This article will demystify the concept of the derivative of a moment generating function and show its practical applications.

1. What is a Moment Generating Function?



The moment generating function, M<sub>X</sub>(t), for a random variable X is defined as the expected value of e<sup>tX</sup>:

M<sub>X</sub>(t) = E[e<sup>tX</sup>] = ∫<sub>-∞</sub><sup>∞</sup> e<sup>tx</sup>f(x)dx (for continuous random variables)

M<sub>X</sub>(t) = Σ<sub>x</sub> e<sup>tx</sup>P(X=x) (for discrete random variables)

where f(x) is the probability density function (PDF) for continuous variables and P(X=x) is the probability mass function (PMF) for discrete variables. The "t" is a dummy variable; it's not a parameter of the distribution itself.

The beauty of the MGF lies in its ability to generate moments. The n<sup>th</sup> moment (E[X<sup>n</sup>]) can be found by taking the n<sup>th</sup> derivative of M<sub>X</sub>(t) with respect to 't' and evaluating it at t=0.

2. Derivatives and Moments: The Connection



The magic happens when we differentiate the MGF. Let's consider the first few derivatives:

First Derivative: M<sub>X</sub>'(t) = d/dt [E[e<sup>tX</sup>]] = E[d/dt (e<sup>tX</sup>)] = E[Xe<sup>tX</sup>]
Second Derivative: M<sub>X</sub>''(t) = d/dt [E[Xe<sup>tX</sup>]] = E[X<sup>2</sup>e<sup>tX</sup>]
Third Derivative: M<sub>X</sub>'''(t) = d/dt [E[X<sup>2</sup>e<sup>tX</sup>]] = E[X<sup>3</sup>e<sup>tX</sup>]

And so on. Notice the pattern: the n<sup>th</sup> derivative evaluated at t=0 gives the n<sup>th</sup> moment:

M<sub>X</sub><sup>(n)</sup>(0) = E[X<sup>n</sup>]

This is the core principle: the derivatives of the MGF directly provide the moments of the distribution.

3. Practical Example: Exponential Distribution



Let's consider an exponential distribution with parameter λ. Its PDF is f(x) = λe<sup>-λx</sup> for x ≥ 0. The MGF is:

M<sub>X</sub>(t) = ∫<sub>0</sub><sup>∞</sup> e<sup>tx</sup>λe<sup>-λx</sup>dx = λ∫<sub>0</sub><sup>∞</sup> e<sup>-(λ-t)x</sup>dx = λ/(λ-t) (for t < λ)

Now, let's find the mean (first moment):

M<sub>X</sub>'(t) = d/dt [λ/(λ-t)] = λ/(λ-t)<sup>2</sup>
M<sub>X</sub>'(0) = λ/λ<sup>2</sup> = 1/λ = E[X] (Mean)

For the variance (requires the second moment):

M<sub>X</sub>''(t) = 2λ/(λ-t)<sup>3</sup>
M<sub>X</sub>''(0) = 2/λ<sup>2</sup> = E[X<sup>2</sup>]
Variance = E[X<sup>2</sup>] - (E[X])<sup>2</sup> = 2/λ<sup>2</sup> - (1/λ)<sup>2</sup> = 1/λ<sup>2</sup>

This demonstrates how easily we can obtain the mean and variance using the derivatives of the MGF.

4. Advantages of Using Derivatives of MGF



Efficiency: Calculating moments directly from the PDF often involves complex integrations. The MGF offers a more streamlined approach.
Clarity: The process of differentiation is generally less error-prone than complex integration.
General Applicability: The method applies to both discrete and continuous distributions.

5. Key Takeaways



The derivative of the moment generating function provides a powerful and efficient method for calculating the moments of a probability distribution. This avoids the often cumbersome direct calculation using integration or summation. Mastering this technique simplifies statistical analysis and deepens the understanding of probability distributions.


Frequently Asked Questions (FAQs)



1. What if the MGF doesn't exist? Some distributions don't have a moment generating function. In such cases, other techniques for calculating moments are needed.

2. Can I use the MGF to find all moments? Theoretically, yes, provided the MGF exists and is differentiable infinitely many times. However, practically, higher-order derivatives can become computationally intensive.

3. Are there limitations to using the derivative of the MGF? Yes, calculating higher-order derivatives can become complex. Additionally, the MGF might not exist for all distributions.

4. What are some other applications of the MGF? Beyond moment calculation, the MGF is used in proving limit theorems (like the central limit theorem), characterizing distributions, and determining the distribution of sums of independent random variables.

5. What if my distribution is not standard? The process remains the same; you first find the MGF for your specific distribution and then proceed with differentiation. The complexity of the derivatives will depend on the form of the MGF.

Links:

Converter Tool

Conversion Result:

=

Note: Conversion is based on the latest values and formulas.

Formatted Text:

ascii 219
integral de x dx
mat toolbar row
8g to ml
michael jackson 1982 album
24 degrees c to f
3 inches to feet
no chin
can you drink peroxide
permittivity of silicon dioxide
before he cheats
characteristics of a novel
the sniper liam o flaherty summary
difference between d and l glucose
acute right obtuse

Search Results:

为什么导数和微分的英日文术语如此混乱? - 知乎 30 Jun 2017 · 给出的方法一真不错~ 我是这么梳理这些概念和术语的: 首先,「导」这个字在汉语术语中是使用得最多的。它不仅用于导函数、单点导数这些结果,还用于「求导」这个过程 …

导数为什么叫导数? - 知乎 8 Feb 2020 · 导数 (derivative),最早被称为 微商,即微小变化量之商,导数一名称是根据derivative的动词derive翻译而来,柯林斯上对derive的解释是: If you say that something such as a word …

Simulink仿真问题在状态“1”某时间的时候导数不收敛?如何解决? … (5)通常给定积分的初始输入为eps, (6)离散的,在代数环处增加delay环节,如果是连续系统,增加memory环节。 参考: Matlab Answer: Derivative of state '1' in block ~ at time 0.0 is not …

如何在 MATLAB 中使用合适的函数或方法对时间t和空间z进行偏 … 可参考: 偏导数运算可以帮助我们更好地理解函数在特定点上的变化率。 偏导数表示函数在某个特定点上,当一个变量变化时,另一个变量的变化率。在 MATLAB 中,可以使用 "gradient" …

是谁将『derivative』翻译为『导数』的? - 知乎 不知道。 不过我祖父杨德隅编写的1934年版的“初等微分积分学”中,是将 导数 翻译成了微系数。因为此教材在当年传播甚广,因此至少当时并没有把derivatives普遍翻译成导数

Calculus里面的differentiable是可导还是可微? - 知乎 9 Oct 2018 · 多元函数 里面不谈可导这个概念,只说可偏导,对应英文为partial derivative。 多元函数也有可微的概念,对应英文为differentiate,但是多元函数里面的可偏导和可微不等价。

什么是Dirty Derivative? - 知乎 什么是Dirty Derivative? 最近在学PID控制,对四旋翼无人机进行MATLAB仿真时,看到国外的论文里有代码在控制器里使用"Dirty Derivative",但百度必应搜不到具… 显示全部 关注者 1

偏导数符号 ∂ 的正规读法是什么? - 知乎 很神奇 一起上完课的中国同学不约而同的读par (Partial derivative) 教授一般是读全称的,倒是有个华人教授每次都是一边手写一边说 this guy。

simulink如何设置微分模块derivative初值? - 知乎 simulink如何设置微分模块derivative初值? 想由已知的运动行程求导获得速度和加速度,但求导结果的初值都是从0开始,零点附近出现了数值跳动导致了求导结果在零点处很大。

不同derivative之间有什么联系与关系? - 知乎 不同derivative之间有什么联系与关系? 想请问一下Gateaux derivative, Lie derivative, Fréchet derivative之间有什么联系呢? 应该如何理解他… 显示全部 关注者 3 被浏览